

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/42

Paper 4 A Level Structured Questions

October/November 2016

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

[Turn over

© UCLES 2016

P	age 2		Mark Scheme S Cambridge International AS/A Level – October/November 2016	yllabus 9702	Pape	r
1	(a)		ce per unit mass	3102	B1	[1]
•	(u)	1010	be per unit mass		D 1	ניו
	(b)	(i)	radius/diameter/size (of Proxima Centauri) \ll /is much less than 4.0×10^{13} km/separation (of Sun and star) or			
			(because) it is a <u>uniform</u> sphere		B1	[1]
		(ii)	1. field strength = GM/x^2			
			= $(6.67 \times 10^{-11} \times 2.5 \times 10^{29})/(4.0 \times 10^{13} \times 10^{3})^{2}$		C1	
			$= 1.0 \times 10^{-14} \mathrm{Nkg^{-1}}$		A1	[2]
			2. force = field strength × mass			
			$= 1.0 \times 10^{-14} \times 2.0 \times 10^{30}$		C1	
			or			
			force = GMm/x^2			
			= $(6.67 \times 10^{-11} \times 2.5 \times 10^{29} \times 2.0 \times 10^{30})/(4.0 \times 10^{13} \times 10^{3})$) ² (0	C1)	
			$= 2.0 \times 10^{16} \mathrm{N}$		A1	[2]
	(c)	ford	ce (of 2×10^{16} N) would have little effect on (large) mass of Sun		B1	
			ald cause an acceleration of Sun of 1.0 \times 10 $^{-14}$ m s $^{-2}$ /very small/negligil seleration	ble	B1	[2]
		or				
			ny stars all around the Sun effect of forces/fields is zero	•	B1) B1)	
2	(a)	(i)	number of moles/amount of substance		B1	[1]
		(ii)	kelvin temperature/absolute temperature/thermodynamic temperature	•	B1	[1]
	(b)	pV	= nRT			
		4.9	$\times 10^5 \times 2.4 \times 10^3 \times 10^{-6} = n \times 8.31 \times 373$		B1	
		n =	0.38 (mol)		C1	
		nur	mber of molecules or $N = 0.38 \times 6.02 \times 10^{23} = 2.3 \times 10^{23}$		A1	[3]

Page 3					Paper	
			Cambridge International AS/A Level – October/November 2016	9702	42	
		or				
		pV	= NkT		(C1)	
		4.9	$\times~10^{5} \times 2.4 \times 10^{3} \times 10^{-6}$ = $N \times 1.38 \times 10^{-23} \times 373$		(M1)	
		nur	nber of molecules or $N = 2.3 \times 10^{23}$		(A1)	
	(c)	vol	ume occupied by one molecule = $(2.4 \times 10^3) / (2.3 \times 10^{23})$		C1	
			= $1.04 \times 10^{-20} \text{cm}^3$			
		me	an spacing = $(1.04 \times 10^{-20})^{1/3}$		C1	
			= 2.2×10^{-7} cm (allow 1 s.f.)		A1	[3]
		(all	ow other dimensionally correct methods e.g. $V = (4/3)\pi r^3$)			
3	(a)	•	m of/total) potential energy and kinetic energy of (all) molecules/part erence to random (distribution)	icles	M1 A1	[2]
	(b)	(i)	no heat enters (gas)/leaves (gas)/no heating (of gas)		B1	
			work done by gas (against atmosphere as it expands)		M1	
			internal energy decreases		A1	[3]
		(ii)	volume decreases so work done on ice/water (allow work done negligible because ΔV small)		B1	
			heating of ice (to break rigid forces/bonds)		M1	
			internal energy increases		A1	[3]
4	(a)	(i)	0.225s <u>and</u> 0.525s		A1	[1]
		(ii)	period or $T = 0.30 \text{s}$ and $\omega = 2\pi/T$		C1	
			$\omega = 2\pi/0.30$			
			$\omega = 21 \mathrm{rad}\mathrm{s}^{-1}$		A1	[2]
		(iii)	speed = ωx_0 or $\omega (x_0^2 - x^2)^{1/2}$ and $x = 0$		C1	
			$= 20.9 \times 2.0 \times 10^{-2} = 0.42 \mathrm{m s^{-1}}$		A1	[2]

Page 4			Mark Scheme	Syllabus	Pap	
			Cambridge International AS/A Level – October/November 2016	9702	42	i.
		cor	e of tangent method: rect tangent shown on Fig. 4.2 rking e.g. ∆y/∆x leading to maximum speed in range (0.38–0.46) ms	_; –1	(C1) (A1)	
	(b)	cur	etch: reasonably shaped continuous oval/circle surrounding (0,0) ve passes through (0, 0.42) and (0, -0.42) ve passes through (2.0, 0) and (-2.0, 0)		B1 B1 B1	[3]
5	(a)	or	nsducer/transmitter can be also be used as the receiver			
		rec	eives reflected pulses between the emitted pulses			
		(ne	eds to be pulsed) in order to measure/determine depth(s)			
		(ne	eds to be pulsed) to determine nature of boundaries			
		An	y three of the above marking points, 1 mark each		B2	[2]
	(b)	(i)	product of speed of (ultra)sound and density (of medium)		M1	
	(6)	(1)	reference to speed of sound in medium		A1	[2]
		(ii)	if Z_1 and Z_2 are (nearly) equal, $I_{\rm T}/I_0$ (nearly) equal to 1/unity/(very) reflection/mostly transmission	little	B1	
			if $Z_1\gg Z_2$ or $Z_1\ll Z_2$ or the difference between Z_1 and Z_2 is (very) latter I_T/I_0 is small/zero/mostly reflection/little transmission	arge,	B1	[2]
6	(a)	E=	$0 \text{ or } E_A = (-)E_B \text{ (at } x = 11 \text{ cm)}$		B1	
		Q_A	$Vx^2 = Q_B/(20-x)^2 = 11^2/9^2$		C1	
		Q_A	$/Q_{\rm B}$ or ratio = 1.5		A1	[3]
		or				
		Ε∘	Q because r same or $E = Q/4\pi\epsilon_0 r^2$ and r same		(B1)	
		Q_A	$Q_{\rm B} = 48/32$		(C1)	
		Q _A	$/Q_{\rm B}$ or ratio = 1.5		(A1)	

Paç	ge 5			Syllabus	Pape	
		(Cambridge International AS/A Level – October/November 2016	9702	42	
((b)	(i)	for max. speed, $\Delta V = (0.76 - 0.18) \text{ V}$ or $\Delta V = 0.58 \text{ V}$		C1	
			$q\Delta V = \frac{1}{2}mv^2$			
			$2 \times (1.60 \times 10^{-19}) \times 0.58 = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$		C1	
			$v^2 = 5.59 \times 10^7$			
			$v = 7.5 \times 10^3 \mathrm{ms^{-1}}$		A1	[3]
		(ii)	$\Delta V = 0.22 \text{ V}$		C1	
			$2 \times (1.60 \times 10^{-19}) \times 0.22 = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$			
			$v^2 = 2.12 \times 10^7$			
			$v = 4.6 \times 10^3 \mathrm{ms^{-1}}$		A1	[2]
· ((a)	(i)	charge/potential (difference) or charge per (unit) potential (difference)	ce)	B1	[1]
		(ii)	$(V = Q/4\pi\epsilon_0 r \text{ and } C = Q/V)$			
			for sphere, C (= Q/V) = $4\pi\epsilon_0 r$		C1	
			$C = 4\pi \times 8.85 \times 10^{-12} \times 12.5 \times 10^{-2} = 1.4 \times 10^{-11} \text{F}$		A1	[2]
((b)	(i)	$1/C_{\rm T} = 1/3.0 + 1/6.0$			
			$C_{T} = 2.0 \mu\text{F}$		A1	[1]
		(ii)	total charge = charge on 3.0 μF capacitor = 2.0 (μ) \times 9.0 = 18 (μC)		C1	
			potential difference = Q/C = 18 (μ)C/3.0 (μ)F = 6.0 V		A1	[2]
			or			
			argument based on equal charges:			
			$3.0 \times V = 6.0 \times (9.0 - V)$		(C1)	
			V = 6.0 V		(A1)	
		(iii)	potential difference (= $9.0 - 6.0$) = 3.0 V		C1	
			charge (= $3.0 \times 2.0 \; (\mu)$) = $6.0 \mu C$		A1	[2]

Pa	age (Mark Scheme Syllabus		
		Cambridge International AS/A Level – October/November 2016 9702		
8	(a)	shown between earth symbol and voltmeter	B1	[1]
	(b)	i) gain = $(50 \times 10^3)/100 = 500$	C1	
		$V_{IN} (= 5.0/500) = 0.010 \text{ V}$	A1	[2]
		i) $V_{IN} (= 5.0/5.0) = 1.0 \text{ V}$	A1	[1]
	(c)	e.g. multi-range (volt)meter e.r.o. sensitivity control amplifier channel selector	B1	[1]
9	(a)	by Newton's third law) force on wire is up(wards) by (Fleming's) left-hand rule/right-hand slap rule to give current in direction left to right shown on diagram	M1 A1 A1	[3]
	(b)	orce ∞ current or $F = BIL$ or $B = 0.080/6.0L = 1/75L$	C1	
		naximum current = $2.5 \times \sqrt{2}$ = 3.54A	C1	
		maximum force in one direction = $(3.54/6.0) \times 0.080$ = $0.047 \mathrm{N}$	C1	
		lifference (= 2×0.047) = $0.094 \mathrm{N}$		
		orce varies from 0.047 N upwards to 0.047 N downwards	A1	[4]
10	nuc	<u>i</u> emitting r.f. (pulse)	B1	
	Lar	or frequency/r.f. frequency emitted/detected depends on magnitude of magnetic	B1	
	nuc	i can be located (within a slice)	B1	
	cha	ging field enables position of detection (slice) to be changed	B1	[4]
11	(a)	induced) e.m.f. proportional/equal to <u>rate</u> of change of (magnetic) flux (linkage)	M1 A1	[2]
	(b)	for same current) iron core gives large(r) (rates of change of) flux (linkage) e.m.f induced in solenoid is greater (for same current) induced e.m.f. opposes applied e.m.f. so current smaller/acts to reduce current	B1 M1 A1	[3]

Page 7		Mark Scheme	Syllabus	Pape	er
	(Cambridge International AS/A Level – October/November 2016	9702	42	
	or			(D4)	
	(rat	e of change of) flux linkage is same		(B1) (M1) (A1)	
(c)	e.g	. (heating due to) eddy currents in core			
	(he	ating due to current in) <u>resistance of coils</u>			
	hys	teresis losses/losses due to changing magnetic field in core			
	Any	two of the above marking points, 1 mark each		B2	[2]
(a)	(i)	electron diffraction/electron microscope (allow other sensible sugge	estions)	B1	[1]
	(ii)	photoelectric effect/Compton scattering (allow other sensible sugge	estions)	B1	[1]
(b)	(i)	arrow clear from -0.54 eV to -3.40 eV		B1	[1]
	(ii)	$E = hc/\lambda$ or $E = hf$ and $c = f\lambda$		C1	
		$\lambda = (6.63 \times 10^{-34} \times 3.00 \times 10^{8}) / [(3.40 - 0.54) \times 1.60 \times 10^{-19}] = 4.35$	\times 10 ⁻⁷ m	A1	[2]
(c)	(i)	wavelength associated with a particle that is moving/has momentum/has speed/has velocity		M1 A1	[2]
	(ii)	$\lambda = h/mv$			
		$v = (6.63 \times 10^{-34}) / (9.11 \times 10^{-31} \times 4.35 \times 10^{-7})$		C1	
		$= 1.67 \times 10^3 \mathrm{ms^{-1}}$		A1	[2]
				M1 A1	
	•	• • • • • • • • • • • • • • • • • • • •		B1 B1	
				M1 A1	[6]
	(c) (a) X-r tak cor 2D rep	or san (rat small) (c) e.g (he hys An) (a) (i) (ii) (b) (i) (ii) (c) (i) (ii) X-ray in taken from taken f	 Cambridge International AS/A Level – October/November 2016 or same supply so same induced e.m.f. balancing it (rate of change of) flux linkage is same smaller current for same flux when core present (c) e.g. (heating due to) eddy currents in core (heating due to current in) resistance of coils hysteresis losses/losses due to changing magnetic field in core Any two of the above marking points, 1 mark each (a) (i) electron diffraction/electron microscope (allow other sensible sugger (ii) photoelectric effect/Compton scattering (allow other sensible sugger (ii) arrow clear from –0.54 eV to –3.40 eV (i) E = hc/λ or E = hf and c = fλ λ = (6.63 × 10⁻³⁴ × 3.00 × 10⁸)/[(3.40 – 0.54) × 1.60 × 10⁻¹⁹] = 4.35 (c) (i) wavelength associated with a particle that is moving/has momentum/has speed/has velocity (ii) λ = h/mv ν = (6.63 × 10⁻³⁴) / (9.11 × 10⁻³¹ × 4.35 × 10⁻⁷) 	or same supply so same induced e.m.f. balancing it (rate of change of) flux linkage is same smaller current for same flux when core present (c) e.g. (heating due to) eddy currents in core (heating due to current in) resistance of coils hysteresis losses/losses due to changing magnetic field in core Any two of the above marking points, 1 mark each (a) (i) electron diffraction/electron microscope (allow other sensible suggestions) (ii) photoelectric effect/Compton scattering (allow other sensible suggestions) (b) (i) arrow clear from −0.54 eV to −3.40 eV (ii) E = hc/λ or E = hf and c = fλ λ = (6.63 × 10 ⁻³⁴ × 3.00 × 10 ⁸)/[(3.40 − 0.54) × 1.60 × 10 ⁻¹⁹] = 4.35 × 10 ⁻⁷ m (c) (i) wavelength associated with a particle that is moving/has momentum/has speed/has velocity (ii) λ = h/mv v = (6.63 × 10 ⁻³⁴) / (9.11 × 10 ⁻³¹ × 4.35 × 10 ⁻⁷) = 1.67 × 10 ³ ms ⁻¹ X-ray image of a (single) slice/cross-section (through the patient) taken from different angles/rotating X-ray (beam) computer is used to form/process/build up/store image 2D image (of the slice)	Cambridge International AS/A Level – October/November 2016 9702 42 or same supply so same induced e.m.f. balancing it (rate of change of) flux linkage is same smaller current for same flux when core present (B1) (M1) (M1) (c) e.g. (heating due to) eddy currents in core (heating due to current in) resistance of coils hysteresis losses/losses due to changing magnetic field in core Any two of the above marking points, 1 mark each B2 (a) (i) electron diffraction/electron microscope (allow other sensible suggestions) B1 (ii) photoelectric effect/Compton scattering (allow other sensible suggestions) B1 (b) (i) arrow clear from -0.54 eV to -3.40 eV B1 (ii) $E = hc/\lambda$ or $E = hf$ and $c = f\lambda$ C1 $\lambda = (6.63 \times 10^{-34} \times 3.00 \times 10^8)/[(3.40 - 0.54) \times 1.60 \times 10^{-19}] = 4.35 \times 10^{-7}$ m A1 (c) (i) wavelength associated with a particle that is moving/has momentum/has speed/has velocity M1 (ii) $\lambda = h/mv$ V = $(6.63 \times 10^{-34})/(9.11 \times 10^{-31} \times 4.35 \times 10^{-7})$ C1 $= 1.67 \times 10^3$ m s ⁻¹ A1 X-ray image of a (single) slice/cross-section (through the patient) taken from different angles/rotating X-ray (beam) M1

Page 8	Mark Scheme	Syllabus	Paper		
i age o	Cambridge International AS/A Level – October/November 2016			42	
	(i) ${}_{2}^{4}\text{He}$ or ${}_{2}^{4}\alpha$	3.02	B1	[1]	
(b)	(i) $\Delta m = (29.97830 + 1.00867) - (26.98153 + 4.00260)$ = 30.98697 - 30.98413		C1		
	= $2.84 \times 10^{-3} \text{ u}$ ii) $E = c^2 \Delta m \text{ or } mc^2$		C1	[2]	
	= $(3.0 \times 10^8)^2 \times 2.84 \times 10^{-3} \times 1.66 \times 10^{-27}$ = 4.2×10^{-13} J		A1	[2]	
(c)	mass of products is greater than mass of A l plus α or reaction causes (net) increase in (rest) mass (of the system)		B1		
	α-particle must have at <u>least</u> this amount of <u>kinetic energy</u>		B1	[2]	